- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Gual, Javier (1)
-
Kleiber, William (1)
-
Marchitto, Thomas (1)
-
Ossandón, Álvaro (1)
-
Rajagopalan, Balaji (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a novel space‐time Bayesian hierarchical model (BHM) to reconstruct annual Sea Surface Temperature (SST) over a large domain based on SST at limited proxy (i.e., sediment core) locations. The model is tested in the equatorial Pacific. The BHM leverages Principal Component Analysis to identify dominant space‐time modes of contemporary variability of the SST field at the proxy locations and employs these modes in a Gaussian process framework to estimate SSTs across the entire domain. The BHM allows us to model the mean field and covariance, varying in space and time in the process layers of the hierarchy. Using the Markov Chain Monte Carlo (MCMC) method and suitable priors on the model parameters, posterior distributions of the model parameters and, consequently, posterior distributions of the SST fields and the attendant uncertainties are obtained for any desired year. The BHM is calibrated and validated in the contemporary period (1854–2014) and subsequently applied to reconstruct SST fields during the Holocene (0–10 ka). Results are consistent with prior inferences of La Niña‐like conditions during the Holocene. This modeling framework opens exciting prospects for modeling and reconstruction of other fields, such as precipitation, drought indices, and vegetation.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
